
structural transitions in solids

542 doi:10.1107/S010876731002636X Acta Cryst. (2010). A66, 542–552

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 7 October 2009

Accepted 4 July 2010

2010 International Union of Crystallography

Printed in Singapore – all rights reserved

Interactive visualization of quantum-chemistry data

Yun Janga* and Ugo Varettob

aComputer Graphics Laboratory, ETH Zurich, Switzerland, and bSwiss National Supercomputing

Centre, Switzerland. Correspondence e-mail: jangy@inf.ethz.ch

Simulation and computation in chemistry studies have improved as computa-

tional power has increased over recent decades. Many types of chemistry

simulation results are available, from atomic level bonding to volumetric

representations of electron density. However, tools for the visualization of the

results from quantum-chemistry computations are still limited to showing

atomic bonds and isosurfaces or isocontours corresponding to certain isovalues.

In this work, we study the volumetric representations of the results from

quantum-chemistry computations, and evaluate and visualize the representa-

tions directly on a modern graphics processing unit without resampling the

result in grid structures. Our visualization tool handles the direct evaluation of

the approximated wavefunctions described as a combination of Gaussian-like

primitive basis functions. For visualizations, we use a slice-based volume-

rendering technique with a two-dimensional transfer function, volume clipping

and illustrative rendering in order to reveal and enhance the quantum-chemistry

structure. Since there is no need to resample the volume from the functional

representations for the volume rendering, two issues, data transfer and

resampling resolution, can be ignored; therefore, it is possible to explore

interactively a large amount of different information in the computation results.

1. Introduction

Quantum chemistry applies quantum mechanics and field

theory concepts to give a complete and detailed description of

the electronic structure of a chemical system. Detailed elec-

tronic structure information is key in understanding chemical

reactions and, in general, the physical properties of materials.

Applications of quantum chemistry include predicting or

confirming radiation spectra, studying chemical reactions to

understand how two molecules (e.g. a possible drug and an

enzyme) can interact, molecular design and computational

materials science. Quantum chemistry is based on the Schrö-

dinger equation, in which electrons are considered as wave-

like particles whose behavior is mathematically represented

by a set of wavefunctions obtained by solving the Schrödinger

equation that defines the state of a physical system on the

atomic scale. The time-independent Schrödinger equation for

a one-particle system is

�h2

8�2m
r

2
þ V

� �
 ðrÞ ¼ E ðrÞ; ð1Þ

where h is Planck’s constant, m is the mass of the particle, V is

the potential energy, E is the total energy and r represents a

position in three-dimensional space. The quantity j�ðrÞj2,
where �ðrÞ is a solution to equation (1), gives the probability

of finding the particle at position r. Analytical solutions to

equation (1) are only available for very simple systems.

Quantum-chemistry computations focus on finding approxi-

mated solutions to the Schrödinger equation for multi-atom

systems. Solutions to equation (1) are used to define proper-

ties, represented as scalar fields, such as electron density,

electrostatic potential and molecular orbitals.

To analyze properly the output of quantum-chemistry

computations, three-dimensional visualizations of atomic

orbitals (AOs), molecular orbitals (MOs), electron and spin

density, and electrostatic potential are required. Visualization

tools currently available in programs like Molden (Schafte-

naar & Noordik, 2000) or Molekel (Molekel, 2009) display

scalar fields by first sampling the solutions, which are func-

tional representations, on three-dimensional regular grids and

then building isosurfaces using triangulations for specific

isovalues. The resampling process prior to the volume

rendering of molecular data raises the following challenges:

data storage, data transfer and evaluation speed of the func-

tional representations. Since there are multiple atomic and

molecular orbitals, it is almost impossible to interactively

render all combinations of these atomic and molecular orbitals

for atomic and molecular structures. For example, the C2H5

molecule is one of the simplest Gaussian-type orbital data sets

we studied here and it has 40 different atomic orbitals and 38

different molecular orbitals. Exploring all different combina-

tions is a daunting task because of the 240 � 38 resampling

processes required. In this work, we present a novel method

for performing interactive evaluation and volumetric

rendering of atomic and molecular orbitals directly on

graphics hardware without resampling. Since the approximate

solutions to the Schrödinger equation are sums of basis

functions, we evaluate the functional representations on the fly

in a fragment program by storing all parameters and coeffi-

cients in textures. We apply general volume rendering, volu-

metric isosurface rendering, illustrative rendering and volume-

clipping techniques in order to visualize the atomic and

molecular structures. Fig. 1 gives an overview of our system.

We also extend conventional slice-based volume rendering

(Wilson et al., 1994).

Our contributions from this work are as follows:

(a) Direct evaluation of the functional representation for

molecular data on graphics hardware – computing accurate

gradients and avoiding data transfers from the central

processing unit (CPU) to the graphics processing unit (GPU).

(b) Interactive volume rendering of molecular data without

resampling on grid structures – discarding an expensive

intermediate process for volume rendering.

(c) Illustrative and volume-clipping rendering to show

nested volumetric atomic and molecular structures – multiple

isosurfaces.

In this work, we use two types of basis functions. One is

pure Gaussian and the other is a Gaussian-type orbital (GTO).

The GTO has been used widely because it is easy to change its

shape according to the orbital, whereas the pure Gaussian

basis function is newly proposed because of its simplicity in

quantum-chemistry computations. However, the technique

proposed here can be extended further to perform interactive

evaluation and rendering of any functionally represented data

set.

We first review previous work in x2 and describe data from

quantum-chemistry computations in x3. We then introduce

details of our interactive evaluation and visualization of the

molecular data and present results produced by our system in

xx4 and 5. Finally, the conclusion and future directions are

described in x6.

2. Previous work

In the area of molecular research, there are many visualization

studies from drawing simple atoms to rendering volumetric

representations. One approach to showing molecular surfaces

is to use triangular meshes. Cheng & Shi (2004) proposed the

restricted Delaunay triangulation to extract high-quality,

smooth, molecular skin surfaces. Another molecular-surface

representation was studied by Cipriano & Gleicher (2007),

who showed that the abstracted molecular surfaces provide

the boundary of a molecule, and that the physical and

chemical properties at the boundary are provided by

extracting the surface abstract from input triangular meshes.

Lampe et al. (2007) presented protein dynamics using a two-

level rendering approach. They generated geometry residues

on the fly to show interactive protein dynamics with ‘balls and

sticks’ for atoms and bonds. When there are many atoms in the

visualization, it is difficult to see the overall molecular struc-

ture with direct illumination. To enhance visual perception,

Tarini et al. (2006) presented ambient occlusion and edge

cueing.

Volume visualization is also applied to molecular data for

volumetric structures. Hu et al. (2006) presented direct volume

rendering of protein data and they studied an improved

transfer function to show various data ranges. In their work,

they resampled scalar data to three-dimensional regular grids.

Lattice-based volume visualization was presented by Qiao et

al. (2005). They stored all lattice information from quantum-

dot simulations and visualized electron orbitals in a volume.

Their work is based on the sampled lattices which are already

provided from the computation. Sampled lattices are a

discrete form of data, whereas our approach is to handle the

continuous data form. Network-based visualization of nano-

technology applications was studied by Qiao et al. (2006) and

electron particles were visualized with volume rendering of

the electron-density volume.

Several researchers present physical and chemical proper-

ties of molecular data using visualizations. Lee & Varshney

(2002) represented thermal vibrations and uncertainty of

the molecular surfaces, and visualized the fuzzy molecular

surfaces to provide a more informative display for a better

understanding of protein structure and function. Mehta et al.

(2004) detected anomalous structures in lattice-based

molecular-simulation data on a regular grid and showed and

verified the detection with visualization. Similar research was

presented by Mehta & Jankun-Kelly (2006) on unstructured

models of nematic liquid crystals. Another study on cluster

detection in molecular dynamics was presented by Grottel et

al. (2007) with visual verification and analysis. Schmidt-

Ehrenberg et al. (2002) presented molecular conformations by

visualizing regular-grid molecular data.

In order to emphasize molecular structures, chemists use

different primitives, such as ‘balls and sticks’, helices and

ribbons. Liu et al. (2008) presented interactive molecule

construction on a GPU. They reconstructed atoms with

spheres interactively with GPU acceleration for educational

purposes. Bajaj et al. (2004) studied the primitives recon-

Acta Cryst. (2010). A66, 542–552 Jang and Varetto � Visualization of quantum-chemistry data 543

structural transitions in solids

Figure 1
Overview of our interactive visualization system. Two types of data are
stored in textures and evaluated and visualized in our volume rendering.
Different rendering results, such as volume rendering, isosurface
rendering, illustrative rendering and volume-clipping rendering, are
produced. Note that a and b are the coefficients in equation (3).

structed on programmable graphics units by three-

dimensional image-based rendering. Recently, Stone et al.

(2009) proposed a fast way to resample the results of

quantum-chemistry computations using GPUs and multi-core

CPUs. This work was motivated by the heavy computation

needed for visualizations of results from quantum-chemistry

computations. They used graphics hardware to resample the

results on regular grids and visualize the resampled volumetric

data. A large increase in speed is achieved compared to a

number of different CPU cores and different GPUs. Ufimtsev

& Martinez (2008) used a similar approach using GPUs to

evaluate the results without rendering capability, whereas our

approach combines both the evaluation and the rendering.

Volume rendering is widely used and the techniques vary

according to the input grid structures. Jang et al. (2004, 2006),

however, presented reconstruction of volumetric functional

representations using graphics hardware without resampling

on grid structures. Ebert et al. (2002) showed procedural

textures which are continuous and can be evaluated easily in a

volume. Since the quantum-chemistry computations generate

functional representations of atomic and molecular orbitals,

their work motivates our volumetric visualizations of mole-

cular data. Volume illustration is another technique for

enhancing the visual understanding of volumetric data and it

shows enhanced understanding of medical and flow data

(Ebert & Rheingans, 2000; Svakhine et al., 2005).

3. Data in quantum chemistry

Most quantum-chemistry programs find an approximated

solution to the Schrödinger equation, then generate data

containing a description of the electron structure of the system

under analysis in terms of coefficients to be applied to a set of

basis functions such as

’ðx; y; zÞ ¼ a ftðx; y; zÞ expð�br2
Þ; ð2Þ

where a and b are real values and ftðx; y; zÞ is a polynomial

function. r is the distance between the center of the basis

function and (x; y; z). ftðx; y; zÞ varies depending on the

orbital types and computation methods. Based on the basis

function ’ðx; y; zÞ, atomic and molecular orbitals are recon-

structed as described in the following sections.

3.1. Atomic orbitals

An atomic orbital is a mathematical function that describes

the behavior of an electron in an atom. This function can be

used to calculate the probability of finding any electron of an

atom in a region of space surrounding the atom’s nucleus. The

term may also refer to the region of three-dimensional space

where the electron is most likely to be.

Each atomic orbital is approximated with a sum of basis

functions of the form described in equation (2),

�ðx; y; zÞ ¼
PM
i¼1

’iðx; y; zÞ ¼
PM
i¼1

ai ftðx; y; zÞ expð�bir
2
i Þ; ð3Þ

where M is the number of basis functions used to define

an orbital and ftðx; y; zÞ is a polynomial function defined

according to the orbital types (s, sp, p, d, f). The polynomial

functions (ft) for the most common orbitals, s, p and d, are

summarized in Table 1.

3.2. Molecular orbitals

Molecular orbitals are mathematical functions which do not

represent any physical quantity; they are very useful in the

qualitative description of bonding and in studying chemical

reactions. The molecular orbital is represented with a linear

combination of atomic orbitals,

 ðx; y; zÞ ¼
PN
j¼1

gj�jðx; y; zÞ; ð4Þ

where gj is a real value (molecular orbital coefficient) and

�jðx; y; zÞ is an atomic orbital introduced in equation (3). N is

the number of the atomic orbitals.

3.3. Data structure

As mentioned in x1, we use two different basis functions in

this work. In the case of Gaussian basis functions, data are

stored as sets of centers (x; y; z), exponents (b) and coeffi-

cients (a). Since the Gaussian basis function has one poly-

nomial function, as shown in Table 1, it is not possible to

represent different types of atomic orbitals using basis func-

tions with the same center. Therefore, each Gaussian has its

own center. Note that there is no molecular orbital coefficient

in the Gaussian data format. On the other hand, data repre-

sented with GTOs have common centers only at the atom

centers, since the orbital types can be represented by the

polynomial functions shown in Table 1. The other parameters

(b’s and a’s) and orbital types are stored afterwards, followed

by molecular orbital coefficients (g’s). The number of mole-

cular orbital coefficients corresponds to the number of atomic

orbitals. For example, let us assume that there are two s

orbitals, three p orbitals and two d orbitals. The total number

of atomic orbitals (i.e. the number of molecular orbital coef-

ficients) is 2� 1ðsÞ þ 3� 3ðpÞ þ 2� 6ðdÞ ¼ 23, since there are

three polynomial functions (ft) in the p orbital and six poly-

nomial functions in the d orbital.

structural transitions in solids

544 Jang and Varetto � Visualization of quantum-chemistry data Acta Cryst. (2010). A66, 542–552

Table 1
Polynomial functions (ft) used in equation (3).

Basis function Orbital type ft

Gaussian all 1

GTO s 1
px x
py y
pz z
dxx x2=31=2

dyy y2=31=2

dzz z2=31=2

dxy xy
dxz xz
dyz yz

3.4. Data pre-processing

The coefficients ai and bi of atomic orbitals, together with

orbital types and the coefficients gi of the molecular orbitals,

are read from the output of popular quantum-chemistry

packages such as Gaussian and GAMESS, and used to

reconstruct the molecular orbital functions as described in

equation (4). Coefficients are properly normalized to ensure

that the probability of finding each electron in the system in

the entire three-dimensional space is always equal to 1.

We also find the bond structures among atoms when the

data are read and they are sent to the GPU to evaluate ‘balls

and sticks’ for atoms and bonds. Since it is still difficult to find

the solution of the Schrödinger equation for molecules with

many atoms, we are generally dealing with a small number of

atoms. Therefore, we can afford to compute distances for all

pairs of atoms in a two-dimensional square array on the CPU

and compare the distance with the covalent radius (Allen et

al., 1987). If the distance between two atoms is less than the

covalent radius, there is a bond between them.

4. Interactive visualization of molecular data

As described in x3, the molecular data in quantum chemistry

are modeled as a sum of basis functions, such as Gaussians and

GTOs. The molecular data file contains sequences of basis-

function parameters including centers, coefficients, exponents

etc. Some basis functions, such as GTOs, imply different

reconstruction equations depending on the orbital types. The

reconstruction (resampling) of data values in a certain volume

would require time-consuming computations proportional to

the selected grid resolutions and the visualization of the

reconstructed volume would incur a high level of computa-

tional pre-processing with conventional direct volume-

rendering techniques. Seeing the details of molecular struc-

tures requires many combinations of orbitals, which makes it

impossible to pre-compute and store the resampled volumes.

Avoiding completely this resampling approach used for

most of molecular visualization research, we reconstruct the

volume directly on the GPU by storing the basis-function

parameters in textures. With our approach, it is possible to

show the volumetric molecular structures without transferring

massive amounts of volumetric data.

4.1. Volume rendering on a GPU

Volume rendering (Cabral et al., 1994) in visualization is a

common technique and there are many approaches depending

on underlying grid structures. In our molecular visualization,

the data do not lie on a specific grid structure. We therefore

chose the slice-based volume-rendering technique and we

evaluate fragments on each slice in a fragment program. The

slices are rendered from back to front, so that the color and

opacity are properly displayed. The slices are generated by

computing intersections between a bounding box and

planes in a vertex program as proposed by Rezk-Salama &

Kolb (2005). The number of slices can be adjusted by

our user interface. Using this volume-rendering base, a two-

dimensional transfer function is used to explore the interesting

data values in the volume.

Currently, we use two different types of molecular data

from quantum-chemistry computations. One is formed with all

Gaussians and the other is formed with GTOs. The Gaussian

basis functions have centers, exponents and coefficients of

Gaussians as parameters. On the other hand, GTOs have

centers of atoms, exponents and coefficients of atomic orbitals,

and coefficients of molecular orbitals. In this work, we focus

on two different types of orbitals, namely atomic and mole-

cular orbitals. For the atomic orbitals, only basis-function

parameters are needed for the reconstruction, whereas the

molecular orbitals require one additional parameter, which is

the molecular orbital coefficient.

4.2. Texture layouts for molecular data

We store all these basis-function parameters and corre-

sponding coefficients in two-dimensional textures (texture

memory on the GPU) and fetch the texture values in a frag-

ment program for evaluating data values and gradients of the

functional representations. In order to evaluate the functional

representation efficiently in a fragment program, we encode

all parameters and coefficients as shown in Fig. 2. Since we use

two types of basis functions, we introduce two different

texture layouts, one for Gaussians and the other for GTOs.

The top layout in Fig. 2 shows how we encode the texture

for Gaussian basis functions. Since a Gaussian basis function

does not imply different polynomial functions according to

atomic orbital types, we simply store the centers (xi; yi; zi) and

exponents bi in one texture, and coefficients ai in another

texture. Note that each texture memory contains four

components (r, g, b, a). Therefore, simple fetching of the

texture values in a fragment program is possible in order to

obtain the sum of all basis functions. Note that there is no

molecular orbital coefficient in our molecular data.

In the evaluation of GTOs shown in equation (3) there is a

polynomial term ftðx; y; zÞ, which is defined according to the

atomic orbital type. There is only one common center with

different atomic orbital parameters for the different atomic

orbital types in one atom. The shape of an orbital is defined by

the polynomial term and the polynomial terms can be multiple

functions for p, sp, d and f . For example, the p orbital has three

polynomial terms (px, py, pz) and the d orbital has six poly-

nomial terms (dxx, dyy, dzz, dxy, dxz, dyz). Each polynomial term

has its own molecular orbital coefficient. The bottom part of

Fig. 2 shows the texture layouts for the atomic orbitals and

molecular orbitals with two GTO basis functions. In this

example, there are two atoms, nine atomic orbital types with

16 sets of parameters, and two sets of molecular orbital

coefficients for 36 atomic orbitals. There are multiple basis

functions for one orbital type. In this example, the first s

orbital (s1) for atom 1 has two sets of parameters and the first

d orbital for atom 2 (d1) has three sets of parameters. The

number 36 is calculated as 1ðs1Þ þ 3ðp1Þ þ 3ðp2Þ þ 6ðd1Þ þ 10ðf 1Þ

þ 1ðs1Þ þ 3ðp1Þ þ 3ðp2Þ þ 6ðd1Þ. As shown in the figure, we put the

atom centers and the number of orbital types in texture 1.

Acta Cryst. (2010). A66, 542–552 Jang and Varetto � Visualization of quantum-chemistry data 545

structural transitions in solids

Texture 2 is composed of exponents, coefficients and orbital

types for atomic orbitals. Then we store the molecular orbital

coefficients in texture 3. Textures 1 and 2 are organized in the

order of the parameters, whereas texture 3 is designed

according to the orbital type. For example, since the s orbital

has only one polynomial term, there is one molecular orbital

coefficient, which is stored in r out of rgba. The p orbital has

three polynomial terms; therefore, we place three molecular

orbital coefficients in one rgb in order to reduce the texture

fetch. In the same way, for the d orbital, we use two rgb’s for

the six molecular orbital coefficients.

4.3. Per-fragment reconstruction

In order to evaluate fragments, we use a high-level

language, NVIDIA Cg (NVIDIA, 2009), and the Cg code is

compiled on the fly after the molecular data are read. With the

support of Cg language, we use an if statement to choose the

appropriate fragment program for the functional evaluations

depending on the basis functions. Since we have two different

basis functions, we show two different fragment programs

according to the basis functions. The functional values and the

gradients are evaluated at the same time.

For Gaussian basis functions, two textures, as shown in the

top part of Fig. 2, are fetched for all parameters including the

centers of basis functions and the atomic orbitals are eval-

uated using equation (3). Fig. 3 presents a pseudo-Cg code for

the reconstruction of Gaussian basis functions. In the Cg code,

ithOrbitalDraw is connected to our user interface; there-

fore, we can select/deselect any orbitals on the fly.

For the GTO basis functions, each fragment is evaluated by

computing either equation (3) for the atomic orbitals or

equation (4) for the molecular orbitals. The atomic orbitals are

computed by two texture lookups (texture 1 and texture 2

from the GTOs texture layout in Fig. 2). Note that the texture

lookup is performed with texRECT in Fig. 3. We fetch texture 1

for the atom centers and the number of atomic orbital types.

Then we fetch texture 2 for the exponents, coefficients and

atomic orbital types of each atomic orbital. Once we have all

the parameters, equation (3) is evaluated with the polynomial

functions shown in Table 1 in the for loop. In the fragment

program, we can handle all four rgba (= xyzw) components in

parallel, for example, inpos:xyz and texValue1:xyz. In the

example, we do not need to use the ‘a’ component. Note that

texValue1 has all four components (xyzw) from the

Texture1.

On the other hand, the molecular orbital evaluation needs

one more computation based on the atomic orbital evaluation

as described in the previous paragraph. We fetch one more

texture (texture 3) for the molecular orbital coefficients and

multiply the coefficients right after the atomic orbital

evaluation. Fig. 4 shows a pseudo-Cg fragment program for

this molecular orbital evaluation. Specifically, we show the

functional value and gradient calculation with a p orbital in

order to show the efficiency of our texture layout (texture 3

from the GTO texture layout in Fig. 2). As shown in the Cg

code, we can evaluate three different p orbitals (px, py, pz) at

the same time by fetching three molecular coefficients by one

structural transitions in solids

546 Jang and Varetto � Visualization of quantum-chemistry data Acta Cryst. (2010). A66, 542–552

Figure 3
The main loop of a pseudo-Cg fragment program for the evaluation of an
atomic orbital with Gaussian basis functions.

Figure 2
The parameters of basis functions are packed into two or three texture
memories. Each texture memory contains four components rgba. The top
image shows an example of texture layouts for a 16 Gaussian basis
function with five atomic orbitals in two texture memories. The bottom
image presents our texture packing of GTOs into three textures. In this
example, there are two atoms, nine atomic orbital types, 36 atomic
orbitals and two sets of the molecular orbital coefficients.

texture lookup. Similar computation is applied to d and f

orbitals.

Once the value and gradient of a fragment are computed,

we fetch the transfer-function texture for color and opacity.

Then we apply illumination, illustrative rendering techniques

and a volume-clipping technique in the fragment program.

Note that the gradient is also used as a normal vector at a

position in the volume. Therefore, it is used for the illumina-

tions and illustrative renderings.

4.4. Ball-and-stick rendering

Most molecular visualizations provide a drawing of the

atoms and bonds between atoms and common primitives for

drawing these are balls and sticks. Many molecular visualiza-

tion tools represent balls and sticks with triangular meshes and

render the meshes with other features, such as isosurfaces. In

order to render the meshed balls and sticks together with

the volumetric representation, however, a visibility test with

sorting is necessary for proper rendering results with a single

rendering pass. In this work, we avoid the visibility test by

evaluating the balls and sticks as functional forms. Balls are

represented as spheres and sticks are represented as cylinders.

The sphere and cylinder equations are evaluated as solid

volumes prior to the evaluation of the functional representa-

tions. If a fragment is inside either a sphere or a cylinder, then

we avoid the expensive evaluation of the functional repre-

sentation. The bond structures are pre-processed when the

molecular data are read as described in x3.4.

The functional form of the ball is defined as

f ðx; y; zÞ ¼ ðx� cxÞ
2
þ ðy� cyÞ

2
þ ðz� czÞ

2
¼ r2; ð5Þ

where (cx; cy; cz) is an atom center and r is the radius of the

ball. The cylinder representation of the stick is defined as

follows. Let c1 and c2 be centers of two atoms and n be c2 � c1.

Also, let (x1; y1; z1) be a point in an arbitrary volume, which is

known. Now, we want to find a point (x0; y0; z0) along the line

between c1 and c2. On the unknown point (x0; y0; z0), we set

two primitives, a line parallel and a plane perpendicular to n.

The line is defined as

x� c1x

nx

¼
y� c1y

ny

¼
z� c1z

nz

¼ t ð6Þ

and the plane is defined as

nxðx� x1Þ þ nyðy� y1Þ þ nzðz� z1Þ ¼ 0: ð7Þ

We can solve these two equations to obtain ðx0; y0; z0Þ, which

is an intersection between the line and the plane. Then we

compute the distance between ðx0; y0; z0Þ and ðx1; y1; z1Þ. If

the distance is less than the cylinder radius, the point

ðx1; y1; z1Þ is inside the cylinder. Otherwise, it is not. Note that

we need to make sure that the intersection point ðx0; y0; z0Þ is

between two atom centers.

The ball radius is the van der Waals radius and is read from

an atom element table (BlueObelisk, 2008). The radius varies

depending on the atomic number. The stick radius is set to half

the van der Waals radius of hydrogen, which is the smallest in

the table. We also provide a control for both radii in our user

interface so that users can change the relative sizes. The atom

color is also read from the atom element table, so that

chemists understand the molecular structures easily. The

functional representations of the balls and sticks are evaluated

Acta Cryst. (2010). A66, 542–552 Jang and Varetto � Visualization of quantum-chemistry data 547

structural transitions in solids

Figure 4
The main loop of a pseudo-Cg fragment program for the evaluation of a
molecular orbital with GTO basis functions. In this code, only p-type
molecular orbital computation is shown because it shows the efficiency of
our texture layout for the molecular orbital coefficients. Other orbitals
can be evaluated by similar computations.

as a solid volume in the fragment program before evaluating

the molecular data. If a fragment is inside either the sphere or

the cylinder, there is no evaluation of the molecular data since

the molecular data are hidden.

4.5. Transfer function and illustrative rendering

A transfer function is used to filter data interactively on the

graphical user interface. Mostly we provide a one-dimensional

or two-dimensional histogram of data and users control the

data values or data gradients that are shown in the visualiza-

tion. In this work, we use a two-dimensional transfer function

with data value versus its gradient magnitude. For this volume

rendering of quantum-chemistry data, multiple isovalues are

preferable since more isovalues show the detail of the mole-

cular structures. However, the higher absolute isovalues are

nested in the lower absolute isovalues in the molecular data.

In order to show the internal structures of a molecule clearly,

we design five different two-dimensional transfer functions

(TFs): uniform, Gaussian, left half of Gaussian, right half of

Gaussian and sinusoidal, as shown in Fig. 5(a). The two-

dimensional transfer function is a two-dimensional histogram

of data values (x axis) and gradients (y axis). The uniform TF

is appropriate for rendering isosurfaces and the Gaussian TF is

used for the volume rendering of the molecules. Specifically,

the right and left halves of the Gaussian TF are preferable for

seeing the nested orbital structures, since the highest or lowest

values, which are found mostly at the cores of atoms, are inside

outer shells. The right half of the Gaussian TF is used for the

negative values and the left half of the Gaussian TF is used for

the positive values. Figs. 5(b) and (c) present the transfer-

function comparison of the right half of the Gaussian TF and

the whole Gaussian TF with the GTO basis function data set

for C2H6. The right half of the Gaussian TF shows the core of

the orbital, whereas the whole Gaussian TF hides the internal

structures.

We also apply illustrative rendering techniques to the

molecular data visualization, such as enhancing boundaries

with the sinusoidal TF proposed by Ebert & Rheingans (2000)

and Svakhine et al. (2005). Note that we refer to the works of

Ebert & Rheingans (2000) and Svakhine et al. (2005) for

details. The sinusoidal TF is used to show multiple isovalues

(e.g. the contour volume) in order to see the atomic and

molecular orbital structures. Since visualizing more isovalues

at the same time is preferable, the sinusoidal TF with

boundary enhancements is used to show the contour volume

in an illustrative way, so that we can provide more isovalues

and structures in the volume. Fig. 6 shows the rendering results

of the 27th molecular orbital of the GTO basis function data

for C4H2CH2CH2CH4. In particular, the boundary enhance-

ment with the sinusoidal TF produces very clear multiple

isovalue structures of the nested molecular data.

4.6. Volume clipping

Volume clipping is a technique for hiding unimportant parts

in the volume rendering. In x4.5, we mention that visualizing

multiple isovalues is preferable for showing the molecular

structures. Fig. 7(a) shows our volume-clipping rendering with

Gaussian basis function data for BeO. The atomic orbital

structure in the middle of the volume is clearly shown by

clipping half of the volume out. Users can change the position

and direction of the clipping plane to place it across the area

they are interested in. We decide whether a subvolume is

visible or not by evaluating the clipping-plane equation and

the subvolume location in our fragment program. Then we use

the clip function from the Cg library to remove unwanted

subvolumes.

structural transitions in solids

548 Jang and Varetto � Visualization of quantum-chemistry data Acta Cryst. (2010). A66, 542–552

Figure 5
Transfer-function (TF) comparison. (a) Our five different transfer
functions (from the left: uniform, Gaussian, the right half of Gaussian,
the left half of Gaussian and sinusoidal). Note that the x axis represents
data values and the y axis represents gradient magnitudes. (c) Our two-
dimensional TF setting for generating the image in (b). The right half of
the Gaussian TF (sky blue) is compared with the simple Gaussian TF
(orange). It is possible to see the nested orbital structures in the core of
the atom with the right half of the Gaussian TF.

Figure 6
Volume rendering of the 27th molecular orbital for C4H2CH2CH2CH4.
Warm colors represent positive values and cool colors represent negative
values [equation (4)]. (a) A conventional volume rendering with local
illumination. (b) A volume rendering with the edge coloring using the
sinusoidal TF without illumination. (c) A boundary-enhanced contour
volume rendering with the sinusoidal TFs. (d) An isosurface rendering
with local illumination.

4.7. User interface

In our system, there are four main parts of the user inter-

face, including data loader, colormap loader, transfer-function

control and rendering control. The data loader and colormap

loader parts are simple file-loading interfaces. In the transfer-

function control, we designed the user interface to control

multiple transfer functions with five different transfer-function

modes, which are described in x4.5. Data values, such as

minima and maxima, can also be adjusted for various data

ranges over many atomic and molecular orbitals in the same

data set. In the rendering control, we can select lighting

modes, illustrative rendering mode, specific atomic orbitals

and molecular orbitals, and control the clipping plane for the

volume clipping. In particular, the atomic orbital and mole-

cular orbital selection interfaces can be used to explore the

various atomic and molecular orbitals interactively. Fig. 8

shows our atomic and molecular orbital interfaces. Users can

select any of the atomic orbitals (Fig. 8a) and can also choose

any of the molecular orbitals based on the information shown

in Fig. 8(b).

5. Results and discussion

We implemented our system on a Core 2 Quad CPU 2.4 GHz

processor with NVIDIA GeForce GTX 260 graphics hard-

ware. We extended our slice-based volume-rendering system

by evaluating the functional values directly on a GPU. Ray

casting (Hadwiger et al., 2005; Krüger & Westermann, 2003;

Röttger et al., 2003) could also be used for this application and

easily integrated into our system, since ray casting has

advantages such as adaptive sampling. One issue in our slice-

based volume rendering is the number of slices needed to

reveal all the properties of a quantum-chemistry study.

Resampling with very high resolution takes up to several

hours and it is difficult to visualize high-resolution data on a

desktop PC. In this sense, changing the number of slices in our

system is much easier and faster than resampling and trans-

ferring the resampled data.

We have tested the various data sets summarized in Tables 2

and 3, where we specify the number of basis functions with the

number of corresponding parameters.

BeO, HF and LiH are data sets using Gaussian basis func-

tions. BeO is presented in Fig. 7(a) with multiple isosurfaces

and volume clipping. Clipping along the bond between two

atoms shows the internal orbital structures of BeO. Fig. 7(b) is

a rendering result for HF. In this image, some of the positive

orbitals are nested in the negative orbitals. Figs. 9(a) and (b)

are progressive atomic orbitals of LiH with boundary-

enhanced volume contours. Fig. 9(a) shows a combination of

1s, 2s and 2px of Li, whereas Fig. 9(b) is a rendering result of

2py of Li, and 1s of H on top of part (a). Comparing the two

images, we can see that the 1s of the H orbital (left core) and

2py of the Li orbital (rotation of negative values) change the

atomic orbital structure.

C2H5, C2H6, C4H2CH2CH2CH4 and N2C4O2H4N2C4O2H4

have GTOs as the basis functions. C2H5 has 38 molecular

orbitals and Fig. 10 shows the third and 21st molecular orbitals

with contour volumes. The energy level of the third molecular

orbital is �0.7074 with an occupation of two and � spin,

whereas the energy level of the 21st molecular orbital is 0.9449

with zero occupation and � spin. C2H6 data are used in Fig. 11

compared with the results of Molekel. Figs. 11(a) and (b) of

the figure are isosurface rendering of isovalues (�0:05) with

different grid resolutions. The grid resolution of (a) is 31 � 24

� 24 and that of (b) is 170 � 128 � 137. The computation

timings for Figs. 11(a) and (b) in Molekel are 0.22 and 32.49 s.

As seen in Fig. 11(a), the low-resolution isosurface shows

artifacts on the surface due to the low resolution of resam-

Acta Cryst. (2010). A66, 542–552 Jang and Varetto � Visualization of quantum-chemistry data 549

structural transitions in solids

Figure 7
(a) Contour volume rendering of the atomic orbitals for BeO (Be is the
green atom) with the volume-clipping technique. (b) A boundary-
enhanced illustrative rendering (positive values, orange) with an isosur-
face rendering (negative value, green) for HF (H is the white atom). The
highest positive value is rendered with the red isosurface.

Figure 8
User interfaces for the atomic and molecular orbitals. (a) Our user
interface for choosing the atomic orbitals. (b) The interface for the
molecular orbitals. This shows the spin, energy and occupation of each
molecular orbital in order to help users to select interesting molecular
orbitals.

Table 2
Three data sets with Gaussian basis functions.

Data set
No. of basis functions
(x, y, z, b, a)

No. of atomic
orbital types

No. of atomic
orbitals

LiH 20 4 6
HF 66 9 19
BeO 112 12 28

pling. Fig. 11(c) is the isosurface rendering using our system.

Our system does not produce any artifacts since we perform

per-fragment evaluation of the functional representations. Fig.

6 presents different rendering techniques on C4H2CH2-

CH2CH4 and Fig. 12 presents two different styles for the 30th

molecular orbital of C4H2CH2CH2CH4. Fig. 12(a) shows the

positive data values as the contour volume (orange) and the

negative values as solid volume (blue). Part (b) is the opposite

of part (a). Figs. 13(a) and (b) show different molecular

orbitals of C2H6. Fig. 13(a) is rendered with the volume-

clipping technique and multiple isosurfaces and Fig. 13(b) is

generated by the volume contours with the boundary

enhancement. Both images present the orbital structures

among the atoms and bonds. Fig. 13(c) shows the volume

clipping and (d) shows the isosurface with the volume

contours of N2C4O2H4N2C4O2H4. The molecule is very

complicated but both images

show the molecular orbital

structures in the volume.

We also measured perfor-

mances on a viewport of

600� 517 with 256 slices. The

performances and storage of

the data sets are summarized

in Table 4. Data sets with

GTO basis functions are compared with performances using

Molekel. The performances for our system indicate the

evaluation and rendering speed, whereas the performances for

Molekel include only the resampling and triangulation for one

isosurface. Note that Molekel does not support the data format

for Gaussian basis functions and N2C4O2H4N2C4O2H4 is not

readable in Molekel. The grid resolution in Molekel for the

comparison is set as 122� 97� 97 and Molekel performs

resampling in the grid and marching cube for the isosurfaces.

As seen in the table, our system provides greater performance

than Molekel, even though we do not include the rendering

speeds in Molekel. The performance of our system is highly

dependent on the number of basis functions and the atomic

orbital types. In particular, d orbitals require more computa-

structural transitions in solids

550 Jang and Varetto � Visualization of quantum-chemistry data Acta Cryst. (2010). A66, 542–552

Figure 9
Renderings of the atomic orbitals for an LiH molecule (H is the white
atom) with boundary-enhanced volume contours. (a) The atomic orbitals
rendered with only 1s, 2s and 2px of Li. (b) The atomic orbitals rendered
with 2py of Li, and 1s of H on top of (a).

Figure 10
Molecular orbitals for C2H5 (H is the white atom). (a) The third
molecular orbital. (b) The 21st molecular orbital.

Figure 11
Two-isosurface [0.5 (orange) and �0.5 (green)] comparison of Molekel
(Molekel, 2009) and our system. Parts (a) and (b) show low (31 � 24 �
24) and high (170 � 128 � 137) resolutions of the isosurface using
Molekel. (c) The isosurface rendering using our system.

Figure 12
Molecular orbitals for C4H2CH2CH2CH4 (H is the white atom). (a) The
30th molecular orbital with the positive values as the contour volume. (b)
The 30th molecular orbital with the negative values as the contour
volume.

Table 3
Four data sets with GTO basis functions.

Data set
No. of atoms
(x, y, z)

No. of atomic
orbital types

No. of basis
functions (b, a)

No. of molecular
orbital coefficients ðgÞ

No. of molecular
orbitals

C2H5 7 27 50 40 38
C2H6 8 30 54 42 40
C4H2CH2CH2CH4 17 62 124 125 118
N2C4O2H4N2C4O2H4 24 120 856 264 162

tion compared to s or p orbitals. The storage data in Table 4

indicate the amount of data which need to be transferred to

the GPU. Since we evaluate data values on the fly, only

parameters and coefficients of the basis functions are required.

The storage requirement in Molekel, however, is the size of the

resampled data, which could be used in generic volume

renderers to generate images similar to our system.

Our system has enabled scientists to analyze interactively

atomic and molecular orbitals that give a clear idea of intra-

molecular bonding properties such as the sites where bonds

are more likely to form (bonding sites) and the sites where

bonds are not likely to form (antibonding sites). This is

achieved by applying a sinusoidal transfer function which

results in the rendering of multilevel (i.e. multiple isovalues)

colored surfaces where the intensity of the color can be set to

match the probability of finding electrons at a specific point in

space. In particular, Fig. 10(a) presents clearly the probability

of finding electrons. There is a strong bond between two

carbon atoms and there is a weak bond between two hydrogen

atoms on the right side, which is not found on the left side of

the molecule. The peanut shape of the strong bond was diffi-

cult to visualize due to the lack of interactivity in generating

many isosurfaces. Moreover, the weak bond is not clearly

shown without multiple isovalues. Figs. 13(a) and 13(b) show

how different two molecular orbitals are, according to the

energy. Our approach also proves useful for divulgation

purposes by giving an intuitive idea of how atoms might bond

or not bond to each other by simply looking at the intensity of

the colors. Note that this visualization can only be achieved

with proper support for transparency when one has triangu-

lated meshes, since the sites where bonds are created are

found in the innermost part of the orbital volumes. It is

therefore important to show lighter outer areas and inner

darker volumes of space at the same time. When applying

mesh-based techniques multiple passes are required for

correct rendering of overlapping transparent surfaces.

Another issue that scientists encounter is the performance of

the analysis tool. In order to perform the required analysis,

scientists must be able to generate quickly a number of

molecular orbitals while varying parameters such as isovalues,

bounding box, color and transparency, to help in under-

standing inter- and intramolecular bonding properties; this is

simply impossible with the currently available tools, which

may take hours (compared to tenths of a second with our

approach) to generate the entire set of orbitals.

6. Conclusion and future directions

We have presented our interactive volume rendering of

molecular data by evaluating the functional representations

on a GPU. Our system does not require the resampling on grid

structures for the volume rendering; therefore, there is no

data-transfer issue for a high grid resolution. Direct per-

fragment evaluation of the functional representation in our

fragment program allows us to interactively explore the

functional representations of molecular data and generate

images without artifacts, which are often seen in grid struc-

tures. We also use illustrative rendering techniques to show

the nested atomic and molecular structures and our user

interface enables us to select any interesting atomic and

molecular orbitals.

As seen in Table 4, the performance is degraded as the

number of basis functions and parameters increases. A

possible solution is to use hierarchical spatial structures as

proposed by Jang et al. (2004). We will investigate the spatial

data structures of the molecular data and we would also like to

Acta Cryst. (2010). A66, 542–552 Jang and Varetto � Visualization of quantum-chemistry data 551

structural transitions in solids

Figure 13
More rendering results for C2H6 (a, b) and N2C4O2H4N2C4O2H4 (c, d).
Parts (a) and (b) are the 17th and 20th molecular orbitals with the
boundary-enhanced contour volume. (c) The isosurface rendering of the
27th molecular orbital with multiple isosurfaces and volume clipping. (d)
Both isosurfaces (orange) and volume contours with the sinusoidal TF
(green) of the 30th molecular orbital.

Table 4
Comparison of performances and data-storage requirements between our
system and Molekel.

The evaluation and rendering performances for our system are measured on
a viewport of 600� 517 with 256 slices whereas performances for Molekel
are measured on a regular grid 122� 97� 97 only for resampling and
triangulation of one isosurface. The storage values indicate the amount of data
to be transfered to the GPU.

Our system Molekel

Data set Speed (s) Storage (kb) Speed (s) Storage (kb)

LiH 0.047 0.4 n/a n/a
HF 0.094 1.3 n/a n/a
BeO 0.204 2.2 n/a n/a
C2H5 0.108 6.6 11.1 1147.9
C2H6 0.140 7.2 12.7 1147.9
C4H2CH2CH2CH4 0.270 60.2 27.2 1147.9
N2C4O2H4N2C4O2H4 1.000 178.2 n/a n/a

compare the evaluation quality and performance with ray

casting as an extension of the spatial structure study in the

future. Another future work is related to computing electron

density and electrostatic potential. In this work, the atomic

and molecular orbitals are computed on the fly. The compu-

tation of electron density and electrostatic potential, however,

requires many redundant processes. In order to improve the

performance for electron density and electrostatic potential, it

could be better to use multilevel rendering, so that we can

reduce the large amount of redundant computations. More-

over, we would like to study our ball-and-stick rendering with

this multilevel rendering because the computation of our

visibility test is expensive when we have more atoms and

bonds, and investigate the surface rendering proposed by

Loop & Blinn (2006). Since we can evaluate the scalars and

gradients in our fragment program, we are also interested in

interactively exploring vector fields in the molecular data, such

as topological structures of orbitals and the directions of

orbital gradient fields.

The authors would like to thank Jean Favre, Mario Valle,

John Biddiscombe and Maria Grazia Giuffreda. This work was

supported in part by the Swiss National Science Foundation

under grant No. 200021_124642.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G.
& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–S19.

Bajaj, C. L., Djeu, P., Siddavanahalli, V. & Thane, A. (2004).
Proceedings of the IEEE Conference on Visualization 2004, pp.
243–250.

BlueObelisk (2008). Properties of the elements. Atom element
properties from elements.xml distributed at http://sourceforge.
net/projects/bodr.

Cabral, B., Cam, N. & Foran, J. (1994). 1994 Symposium on Volume
Visualization, pp. 91–98.

Cheng, H.-L. & Shi, X. (2004). Proceedings of the IEEE Conference
on Visualization 2004, pp. 481–488.

Cipriano, G. & Gleicher, M. (2007). IEEE Trans. Vis. Comput. Graph.
13, 1608–1615.

Ebert, D. S., Musgrave, K. F., Peachey, D., Perlin, K. & Worley, S.
(2002). Texturing and Modeling: a Procedural Approach, 3rd ed.,
The Morgan Kaufmann Series in Computer Graphics. San
Francisco: Morgan Kaufmann.

Ebert, D. S. & Rheingans, P. (2000). Proceedings of the IEEE
Conference on Visualization 2000, pp. 195–202.

Grottel, S., Reina, G., Vrabec, J. & Ertl, T. (2007). IEEE Trans. Vis.
Comput. Graph. 13, 1624–1631.

Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K. & Gross, M. H.
(2005). Comput. Graph. Forum, 24, 303–312.

Hu, M., Chen, W., Zhang, T. & Peng, Q. (2006). Comput. Graph. Int.
pp. 397–403.

Jang, Y., Botchen, R. P., Lauser, A., Ebert, D. S., Gaither, K. P. & Ertl,
T. (2006). Comput. Graph. Forum, 25, 587–596.

Jang, Y., Weiler, M., Hopf, M., Huang, J., Ebert, D. S., Gaither, K. P. &
Ertl, T. (2004). EG/IEEE TCVG Symposium on Visualization,
VisSym ’04, pp. 35–44, p. 339.

Krüger, J. & Westermann, R. (2003). Proceedings of the IEEE
Conference on Visualization 2003, pp. 287–292.

Lampe, O. D., Viola, I., Reuter, N. & Hauser, H. (2007). IEEE Trans.
Vis. Comput. Graph. 13, 1616–1623.

Lee, C. H. & Varshney, A. (2002). SPIE Conference on Visualization
and Data Analysis, pp. 80–90.

Liu, F., Liu, Y. & Fordham, D. (2008). Proceedings of World
Conference on Educational Multimedia, Hypermedia and Tele-
communications 2008, pp. 5298–5301.

Loop, C. & Blinn, J. (2006). ACM Trans. Graph. 25, 664–670.
Mehta, S., Hazzard, K., Machiraju, R., Parthasarathy, S. & Wilkins, J.

(2004). Proceedings of the IEEE Conference on Visualization 2004,
pp. 465–472.

Mehta, K. & Jankun-Kelly, T. (2006). IEEE Trans. Vis. Comput.
Graph. 12, 1045–1051.

Molekel (2009). Multiplatform Molecular Visualization, http://cscs.ch/
molekel.

NVIDIA (2009). Cg – The Language for High-Performance Realtime
Graphics, http://developer.nvidia.com/page/cg_main.html.

Qiao, W., Ebert, D. S., Entezari, A., Korkusinski, M. & Klimeck, G.
(2005). Proceedings of the IEEE Conference on Visualization 2005,
pp. 319–326.

Qiao, W., McLennan, M., Kennell, R., Ebert, D. S. & Klimeck, G.
(2006). IEEE Trans. Vis. Comput. Graph. 12, 1061–1068.

Rezk-Salama, C. & Kolb, A. (2005). Proceedings of Vision, Modeling
and Visualization (VMV), pp. 115–122.

Röttger, S., Guthe, S., Weiskopf, D., Ertl, T. & Strasser, W. (2003).
VISSYM ’03: Proceedings of the Symposium on Data Visualization,
2003, pp. 231–238.

Schaftenaar, G. & Noordik, J. (2000). J. Comput. Aided Mol. Des. 14,
123–134.

Schmidt-Ehrenberg, J., Baum, D. & Hege, H. C. (2002). Proceedings
of the IEEE Conference on Visualization 2002, pp. 235–242.

Stone, J. E., Saam, J., Hardy, D. J., Vandivort, K. L., Hwu, Wm. W. &
Schulten, K. (2009). IACAT, GPGPU-2: Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing
Units, pp. 9–18. ACM.

Svakhine, N., Jang, Y., Ebert, D. S. & Gaither, K. P. (2005).
Proceedings of the IEEE Conference on Visualization 2005, pp.
687–694.

Tarini, M., Cignoni, P. & Montani, C. (2006). IEEE Trans. Vis.
Comput. Graph. 12, 1237–1244.

Ufimtsev, I. S. & Martinez, T. J. (2008). J. Chem. Theory Comput. 4,
222–231.

Wilson, O., Gelder, A. V. & Wilhelms, J. (1994). Direct Volume
Rendering via Three-Dimensional Textures. Technical report
UCSC-CRL-94–19. University of California – Santa Cruz, USA.

structural transitions in solids

552 Jang and Varetto � Visualization of quantum-chemistry data Acta Cryst. (2010). A66, 542–552

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=xg5008&bbid=BB33

